Apply Amazon SageMaker Studio lifecycle configurations using AWS CDK
aws.amazon.com - machine-learningThis post serves as a step-by-step guide on how to set up lifecycle configurations for your Amazon SageMaker Studio domains. With lifecycle configurations, system administrators can apply automated controls to their SageMaker Studio domains and their users. We cover core concepts of SageMaker Studio and provide code examples of how to apply lifecycle configuration to your SageMaker Studio domain to automate behaviors such as preinstallation of libraries and automated shutdown of idle kernels.
Amazon SageMaker Studio is the first integrated development environment (IDE) purposefully designed to accelerate end-to-end machine learning (ML) development. Amazon SageMaker Studio provides a single web-based visual interface where data scientists create dedicated workspaces to perform all ML development steps required to prepare data and build, train, and deploy models. You can create multiple Amazon SageMaker domains, which define environments with dedicated data storage, security policies, and networking configurations. With your domains in place, you can then ...
Copyright of this story solely belongs to aws.amazon.com - machine-learning . To see the full text click HERE