Using responsible AI principles with Amazon Bedrock Batch Inference
aws.amazon.com - machine-learningAmazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.
The recent announcement of batch inference in Amazon Bedrock enables organizations to process large volumes of data efficiently at 50% less cost compared to On-Demand pricing. It’s especially useful when the use case is not latency sensitive and you don’t need real-time inference. However, as we embrace these powerful capabilities, we must also address a critical challenge: implementing responsible AI practices in batch processing scenarios.
In this post, we explore a practical, cost-effective approach for incorporating responsible AI guardrails into Amazon Bedrock Batch Inference workflows. Although we use a call center’s transcript summarization ...
Copyright of this story solely belongs to aws.amazon.com - machine-learning . To see the full text click HERE